MARYLAND DEPARTMENT OF TRANSPORTATION

ON-ROAD INVENTORY DEVELOPMENT PROCESS

Mitigation Work Group of the Maryland Commission on Climate Change February 24, 2016

OVERVIEW

- Inventory / Forecast Approaches
 - Top Down vs. Bottom Up
- Maryland Emissions Modeling Process
- 2006 Inventory
- 2020 Forecast
- Transportation Trends
- 2030 Preliminary Forecast
- Challenges
- Next Steps

INVENTORY & FORECAST PROCESSES

"TOP-DOWN" APPROACH

- Simplified Approach using Activity Data multiplied by Emission Factors
 - Statewide fuel consumption
 - Statewide VMT summaries
- EPA State Inventory Tool (SIT) acknowledges limitations
- "Thru Traffic" Vehicle trips beginning and ending outside of MD not accurately accounted for.
- Does not account for travel characteristics and factors:
 - Vehicle speeds, VMT Mix, Idling, local vehicle age, population data etc.
 - Forecasting limitations
 - · National defaults vs local defaults,
- SIT useful for other sources where data is limited (i.e. non-road, and non-mobile)

"BOTTOM UP" APPROACH

- VMT based inventory using Statewide on-road modeling approach with MOVES2014.
- Same process used for Statewide Emissions Inventories, State Implementation Plans (SIP) and Transportation Conformity
- Based on SHA VMT reporting, State and MPO travel demand models
- Includes robust forecasting process
- Incorporates latest planning assumptions and federal vehicle standards
- Approach used for 2006 baseline and 2020 on-road GHG inventories.

MARYLAND EMISSIONS MODELING

Go <u>D</u>ry Run

Select | Primary Control File

c. GARtech Systems, Hackettstown, NJ

DRAFT

Maryland Statewide MOVES-PPSUITE

PROCESS

C:\MDMOVES11\ICENTRAL\MDMOVES14.CT

Version 4.05.49

MDOT/MDE implemented Emissions Process ~2005

timeframe

Customized software PPSUITE/Central

Statewide analysis tool

- MPO consistency
- MWCOG independent
- Updated Triennially with NEI
- MDOT maintains and provides technical support
 - MDE process
 - BMC process
 - WILMAPCO and HEPMPO
- Includes robust QA process
- Approved through Interagency Consultation Process

FREQUENT CHANGES TO THE PROCESS

 EPA Approved Emissions Models - Motor Vehicle Emission Simulator (MOVES)

- Local Planning Assumptions:
 - Minimum every 5-Years
 - MD every three years in conjunction with NEI / SHA traffic / MVA registration / MDE environmental data

2006 INVENTORY & 2020 FORECAST

2006 BASELINE INVENTORY

2006 Baseline

Statewide Inventory

Transportation: 33%, 35.5 mmtCO₂e

Non-road On-road transportation transportation 28% Fossil fuel production 1% Industrial RCI fuel use processes 16% 7% Agriculture 2% Electricity use Waste 39% management 2%

<u>Transportation Inventory</u>

On-road: 84%, 29.7 mmtCO₂e

Other: 16%, 5.8 mmt CO₂e

Source: Maryland's Greenhouse Gas Reduction Act Plan, October 2013.

2020 GHG AND VMT ESTIMATES

MARYLAND DEPARTMENT OF TRANSPORTATION,

TRANSPORTATION TRENDS

TRENDS TO 2030

Emission Rate v. Vehicle Miles Traveled (VMT)

VMT & VMT PER CAPITA

ANNUAL NUMBER OF VEHICLE MILES TRAVELED (VMT) AND VMT PER CAPITA

2006 composite emission rate

(VMT weighted) = 542 g/mi

 $1 \text{ mmt CO}_2 \text{e} = 1.84 \text{ billion VMT}$

2020 composite emission rate

(VMT weighted) = 476 g/mi

 $1 \text{ mmt CO}_2 e = 2.10 \text{ billion VMT}$

2030 composite emission rate

(VMT weighted) = 376 g/mi

1 mmt $CO_2e = 2.66$ billion VMT

1 mmtCO₂e reduction = 3.7% Reduction in VMT in 2030

MARYLAND DEPARTMENT OF TRANSPORTATION,

MARYLAND THRU TRAFFIC

Source - SHA Maryland Statewide Travel Model (2015)

MARYLAND DEPARTMENT OF TRANSPORTATION,

TRANSPORTATION TECHNOLOGIES

Model Years	Program	Ave Fleet Standard
2008-2010	CAFE	34 mpg by 2020 (LD)
2011	Maryland Clean Car	CA Std w/ ZEV Mandate
2012-2016	Phase I - National Program	34.1 mpg by 2016 (LD)
2017-2025	Phase II - National Program	54.5 mpg by 2025 (LD)
2014-2018	Phase I - MD/HD Truck FE Standard	Multiple benefits
2018-2027	Phase II – MD/HD Truck FE Standard*	Not included in MOVES
2017>	Tier3 Vehicle and Fuel Standards	Lower sulfur content – 10 ppm

^{*}Final Rule - August 2016

LIGHT DUTY FLEET TURNOVER

Light Duty Vehicle Distribution by Model Year* (Compared to Light Duty Vehicles Total)

Model Year Group	2020	2030
2026 and Later	0.0%	31.2%
2017-2025	22.8%	51.2%
2011-2016	43.5%	13.3%
2010 and Older	33.7%	4.3%
Total	100.0%	100.0%

^{*}Fleet turnover calculated for a sample MD county

HEAVY DUTY FLEET TURNOVER

Heavy Duty Vehicle Distribution by Model Year* (Compared to Heavy Duty Vehicles Total)

Model Year Group	2020	2030
2028 and Later	0.0%	11.2%
2019-2027	11.1%	44.2%
2014-2018	24.8%	14.3%
2013 and Older	64.1%	30.3%
Total	100.0%	100.0%

^{*}Fleet turnover calculated for a sample MD county

2030 OVERVIEW

LOOKING TO 2030

More complex than 2020 analysis and many more unknowns....

- Almost certain Federal and State vehicle and fuel standards
- 2. Less certain Transportation policy and funding
- 3. Some hints, with many variables to consider -
 - Technology advancement
 - Social trends
 - Market changes and economic shifts
 - Travel behavior

2030 PRELIMINARY RESULTS

CHALLENGES & NEXT STEPS

CHALLENGES

- Funding Constraints & Opportunities
- Land use planning & controls at local jurisdiction level
- Increasing impact of M/HD trucks
- Cost effective strategies compared to technology advances
- Infrastructure / manufacturer support for electric and autonomous Vehicles
- MDOT / State role v. private role
- Removing barriers (e.g. role as a facilitator)
 - Groundbreaking technologies
 - Research / Regulations
 - Changing Social Norms

NEXT STEPS

- 2017 NEI Update due in fall of 2018
- 2017 State Agency Reports
- 2018 Draft GGRA Reporting Requirement
 - 2030 Forecast updated with latest planning assumptions.

QUESTIONS?

Colleen Turner cturner@mdot.state.md.us 410.865.2773

MDOT Planning Documents: www.mdot.maryland.gov

MDOT 2015 Greenhouse Gas Reduction Plan

http://www.mdot.maryland.gov/newMDOT/Planning/Environmental/Doc uments/Greenhouse_Gas_Reduction_Plan_rev.pdf